
Submodular Maximization via Taylor Series Approximation

Gözde Özcan1 Armin Moharrer1 Stratis Ioannidis1

Abstract

We study submodular maximization problems with matroid

constraints, in particular, problems where the objective can

be expressed via compositions of analytic and multilinear

functions. We show that for functions of this form, the

so-called continuous greedy algorithm [1] attains a ratio

arbitrarily close to (1 − 1/e) ≈ 0.63 using a deterministic

estimation via Taylor series approximation. This drastically

reduces execution time over prior art that uses sampling.

1 Introduction.

Submodular functions are set functions that exhibit a
diminishing returns property. They naturally arise in
many applications, including data summarization [2–4],
facility location [5], recommendation systems [6], influ-
ence maximization [7], sensor placement [8], dictionary
learning [9, 10], and active learning [11]. In these prob-
lems, the goal is to maximize a submodular function
subject to matroid constraints. These problems are in
general NP-hard, but a celebrated greedy algorithm [12]
achieves a 1− 1/e approximation ratio on uniform ma-
troids. Unfortunately, for general matroids the approx-
imation ratio drops to 1/2 [13].

The continuous greedy algorithm [1, 14] improves
this bound. The algorithm maximizes the multilinear
relaxation of a submodular function in the continuous
domain, guaranteeing a 1−1/e approximation ratio [1].
The fractional solution is then rounded to a feasible
integral solution (without compromising the objective
value), e.g., via pipage rounding [15] or swap rounding
[16]. The multilinear relaxation of a submodular func-
tion is its expected value under independent Bernoulli
trials; however, computing this expectation is hard in
general. The state of the art is to estimate the multi-
linear relaxation via sampling [1, 14]. Nonetheless, the
number of samples required in order to achieve the su-
perior 1−1/e guarantee is quite high; precisely because
of this, the resulting running time of continuous greedy
is O(N8) in input size N [1].

Nevertheless, for some submodular functions, the
multilinear relaxation can be computed efficiently. One

Supported by NSF grant CCF-1750539.
1{gozcan, amoharrer, ioannidis}@ece.neu.edu, Electrical and

Computer Engineering Department, Northeastern University, Boston,
MA, USA.

well-known example is the coverage function, which we
describe in Sec. 4; given subsets of a ground set, the cov-
erage function computes the number of elements covered
in the union of these subsets. The multilinear relaxation
for coverage can be computed precisely, without sam-
pling, in polynomial time. This is well-known, and has
been exploited in several different contexts [15,17,18].

We extend the range of problems for which the mul-
tilinear relaxation can be computed efficiently. First, we
observe that this property naturally extends to multilin-
ear functions, a class that includes coverage functions.
We then consider a class of submodular objectives that
are a summation over non-linear functions of these mul-
tilinear functions. Our key observation is that the poly-
nomial expansions of these functions are again multilin-
ear; hence, compositions of multilinear functions with
arbitrary analytic functions, that can be approximated
by a Taylor series, can be computed efficiently. A broad
range of problems, e.g., data summarization, influence
maximization, facility location, and cache networks (c.f.
Sec. 6), can be expressed in this manner and solved ef-
ficiently via our approach.

In summary, we make the following contributions:
• We introduce a class of submodular functions that

can be expressed as weighted compositions of ana-
lytic and multilinear functions.

• We propose a novel polynomial series estimator
for approximating the multilinear relaxation of this
class of problems.

• We provide strict theoretical guarantees for a vari-
ant of the continuous greedy algorithm that uses
our estimator. We show that the sub-optimality
due to our polynomial expansion is bounded by a
quantity that can be made arbitrarily small by in-
creasing the polynomial order.

• We show that multiple applications, e.g., data sum-
marization, influence maximization, facility loca-
tion, and cache networks can be cast as instances
of our framework.

• We conduct numerical experiments for multiple
problem instances on both synthetic and real
datasets. We observe that our estimator achieves
74% lower error, in 89% less time, in comparison
with the sampling estimator.

The remainder of the paper is organized as follows.

We review related work and technical background in
Sections 2 and 3, respectively. We introduce multilinear
functions in Sec. 4. We present our estimator and main
results in Sec. 5, examples of cases that can be instances
of our problem in Sec. 6, and our numerical evaluation
in Sec. 7. We conclude in Sec. 8.

2 Related Work.

We refer the reader to Krause and Golovin [5] for a
thorough review of submodularity and its applications.
Accelerating Greedy. The seminal greedy algorithm
proposed by Nemhauser et al. [12] provides a 1 −
1/e approximation ratio for submodular maximization
problems subject to the uniform matroids. However, for
general matroids this approximation ratio deteriorates
to 1/2 [13]. Several works have introduced variants to
greedy algorithm to accelerate it [19–21], particularly
for influence maximization [22, 23]. However, these
accelerations do not readily apply to the continuous
greedy algorithm.
Multilinear Relaxation. The continuous greedy
algorithm was proposed by Vondrák [14] and Calinescu
et al. [1]. Maximizing the multilinear relaxation of
submodular functions improves the 1/2 approximation
ratio of the greedy algorithm [13] to 1 − 1/e [1] over
general matroids. Beyond maximization over matroid
constraints, the multilinear relaxation has been used
to obtain guarantees for non-monotone submodular
maximization [24,25], as well as in pipage rounding [15].
All of these approaches resort to sampling; as we provide
general approximation guarantees, our approach can be
used to accelerate these algorithms as well.
DR-Submodularity. Submodular functions have also
been studied in the continuous domain recently. Con-
tinuous functions that exhibit the diminishing returns
property are termed DR-submodular functions [26–31],
and arise in mean field inference [32], budget allocation
[33], and non-negative quadratic programming [27, 34].
DR-submodular functions are in general neither convex
nor concave; however, gradient-based methods [26–28,
35] provide constant approximation guarantees. The
multilinear relaxation is also a DR-submodular func-
tion; hence, obtaining fractional solutions to multilinear
relaxation maximization problems, without rounding, is
of independent interest. Our work can thus be used to
accelerate precisely this process.
Stochastic Submodular Maximization. Stochas-
tic submodular maximization, in which the objective
is itself random, has attracted great interest recently
[17,35–38], both in the discrete and continuous domains.
A quintessential example is influence maximization [7],
where the total number of influenced nodes is deter-
mined by random influence models. In short, when sub-

modular or DR-submodular objectives are expressed as
expectations, sampling in gradient-based methods has
two sources of randomness (one for sampling the ob-
jective, and one for estimating the multilinear relax-
ation/sampling inputs); continuous greedy still comes
with guarantees. Our work is orthogonal, in that it can
be used to eliminate the second source of randomness.
It can therefore be used in conjunction with stochastic
methods whenever our assumptions apply.
Connection to Other Works. Our work is closest
to, and inspired by, Mahdian et al. [39] and Karimi et
al. [17]. To the best of our knowledge, the only other
work that approximates the multilinear relaxation via
a power series is [39]. The authors apply this technique
to a submodular maximization problem motivated by
cache networks. We depart by (a) extending this ap-
proach to more general submodular functions, (b) estab-
lishing formal assumptions under which this generaliza-
tion yields approximation guarantees, and (c) improv-
ing upon earlier guarantees for cache networks by [39].
In particular, the authors assume that derivatives are
bounded; we relax this assumption, that does not hold
for any of the problems we study here.

Karimi et al. [17] maximize stochastic coverage
functions subject to matroid constraints, showing that
many different problems can be cast in this setting.
Some of the examples we consider (see Sec. 6) consist
of compositions of analytic, non-linear functions with
coverage functions; hence, our work can be seen as a
direct generalization of [17].

3 Technical Preliminaries.

3.1 Submodularity and Matroids. Given a
ground set V = {1, . . . , N} of N elements, a set
function f : 2V → R+ is submodular if and only
if f(B ∪ {e}) − f(B) ≤ f(A ∪ {e}) − f(A), for all
A ⊆ B ⊆ V and e ∈ V . Function f is monotone if
f(A) ≤ f(B), for every A ⊆ B.
Matroids. Given a ground set V , a matroid is a pair
M = (V, I), where I ⊆ 2V is a collection of independent
sets, for which the following holds:

1. If B ∈ I and A ⊂ B, then A ∈ I.
2. If A,B ∈ I and |A| < |B|, there exists x ∈ B \ A

s.t. A ∪ {x} ∈ I.
The rank of a matroid rM(V) is the largest cardinality
of its elements, i.e.: rM(V) = max{|A| : A ∈ I}. We
introduce two examples of matroids:

1. Uniform Matroids. The uniform matroid with
cardinality k is I = {S ⊆ V, |S| ≤ k}.

2. Partition Matroids. Let B1, . . . ,Bm ⊆ V be a
partitioning of V , i.e.,

⋂m
`=1 B` = ∅ and

⋃m
`=1 B` =

V . Let also k` ∈ N, ` = 1, . . . ,m, be a set of
cardinalities. A partition matroid is defined as

I = {S ⊆ 2V | |S∩B`| ≤ k`, for all ` = 1, . . . ,m}.
Change of Variables. There is a one-to-one corre-
spondence between a binary vector x ∈ {0, 1}N and
its support S = supp(x). Hence, a set function f :
2V → R+ can be interpreted as f : {0, 1}N → R+ via:
f(x) , f(supp(x)) for x ∈ {0, 1}N . We adopt this con-
vention for the remainder of the paper. We also treat
matroids as subsets of {0, 1}N , defined consistently with
this change of variables via

M = {x ∈ {0, 1}N : supp(x) ∈ I}.(3.1)

For example, a partition matroid is:

M =
{
x ∈ {0, 1}N |

⋂m
`=1

(∑
i∈B` xi ≤ k`

)}
.(3.2)

The matroid polytope P (M) ⊆ [0, 1]N is the convex hull
of matroid M, i.e., P (M) = conv(M).

3.2 Submodular Maximization Subject to Ma-
troid Constraints. We consider the problem of maxi-
mizing a submodular function f : {0, 1}N → R+ subject
to matroid constraints M:

maxx∈M f(x).(3.3)

As mentioned in the introduction, the classic greedy al-
gorithm achieves a 1/2 approximation ratio over gen-
eral matroids, while the continuous greedy algorithm [1]
achieves a 1 − 1/e approximation ratio. We review the
continuous greedy algorithm below.

3.3 Continuous Greedy Algorithm. The multi-
linear relaxation of a submodular function f is the
expectation of f , assuming inputs xi are independent
Bernoulli random variables, i.e., G : [0, 1]N → R+, and

G(y)=Ex∼y[f(x)]=
∑

x∈{0,1}N
f(x)

∏
i:xi=1

yi
∏
i:xi=0

(1− yi),(3.4)

where y = [yi]
N
i=1 ∈ [0, 1]N is the vector of probabilities

yi = P[xi = 1]. The continuous greedy algorithm first
maximizes G in the continuous domain, producing an
approximate solution to:

maxy∈P (M)G(y).(3.5)

The algorithm initially starts with y0 = 0. Then, it
proceeds in iterations, where in the k-th iteration, it
finds a feasible point mk ∈ P (M) which is a solution
for the following linear program:

(3.6) maxm∈P (M)

〈
m,∇G(yk)

〉
,

After finding mk, the algorithm updates the current
solution y as follows:

(3.7) yk+1 = yk + γkmk,

Algorithm 1 the Continuous Greedy algorithm

1: Input: G : P (M)→ R+, 0 < γ ≤ 1
2: y0 ← 0, t← 0, k ← 0
3: while t < 1 do
4: mk ← arg maxm∈P (M)〈v,∇G(yk)〉
5: γk ← min(γ, 1− t)
6: yk+1 ← yk + γkmk, t← t+ γk, k ← k + 1
7: end while
8: return yk

where γk ∈ [0, 1] is a step size. We summarize the
continuous greedy algorithm in Alg. 1.

The output of Alg. 1 is within a 1−1/e factor from
the optimal solution y∗ ∈ P (M) to (3.5) (see Thm. 3.1
below). This fractional solution can be rounded to
produce a solution to (3.3) with the same approximation
guarantee using, e.g., either the pipage rounding [15] or
the swap rounding [1, 16] methods. Both are reviewed
in detail in App. A.
Sample Estimator. The gradient ∇G is needed to
perform step (3.6); computing it directly via (3.4),
involves a summation over 2N terms. Instead, Calinescu
et al. [1] estimate it via sampling. First, observe that
function G is affine w.r.t a coordinate yi. As a result,

(3.8) (∂G(y)/∂yi) = Ex∼y[f ([x]+i)]−Ex∼y[f ([x]−i)],

where [x]+i and [x]−i are equal to the vector x with the
i-th coordinate set to 1 and 0, respectively. The gradient
of G can thus be estimated by (a) producing T random
samples x(l), for l ∈ {1, . . . , T} of the random vector
x, consisting of independent Bernoulli coordinates with
P(xi = 1) = yi, and (b) computing the empirical mean
of the r.h.s. of (3.8), yielding:

(3.9)
∂̂G(y)

∂yi
=

1

T

T∑
l=1

(f([x(l)]+i)− f([x(l)]−i)).

This estimator yields the following guarantee:

Theorem 3.1. [Calinescu et al. [1]] Consider Algo-

rithm 1, with ∇G(yk) replaced by ∇̂G(yk) given by
(3.9). Set T = 10

δ2 (1 + ln |V |), where δ = 1
40d2|V | and

d = rM(V) is the rank of the matroid. The algorithm
terminates after K = 1

δ steps and, w.h.p.,

G(yK) ≥ (1− (1− δ) 1
δ)G(y∗) ≥ (1− 1

e
)G(y∗)(3.10)

where y∗ is an optimal solution to (3.5).

4 Multilinear Functions.

In practice, estimating G (and, through (3.8), its gra-
dient) via sampling poses a considerable computational

burden. Attaining the guarantees of Thm. 3.1 requires
the number of samples per estimate to grow as N2d4,
that can quickly become prohibitive.

In some cases, however, the multilinear relax-
ation G(y) has a polynomially-computable closed form.
A prominent example is the coverage function, that
arises in several different contexts [15, 17]. Let U =
{J1, . . . ,Jn} be a collection of subsets of some ground
set V = {1, . . . , N}. The coverage f : {0, 1}N → R+ is:

(4.11) f(x) =
∑n
`=1

(
1−

∏
i∈J`(1− xi)

)
.

It is easy to confirm that:

G(y) = Ex∼y[f(x)] = Ex∼y
[n∑
`=1

(
1−

∏
i∈J`

(1− xi)
)]

=

n∑
`=1

(
1−

∏
i∈J`

(1− Ex∼y[xi])
)

= f(y).(4.12)

In other words, the multilinear relaxation evaluated over
y ∈ [0, 1]N is actually equal to f(y), when the latter has
form (4.11). Therefore, computing it does not require
sampling; crucially, (4.11) is O(nN), i.e., polynomial in
the input size.

This clearly has a computational advantage when
executing the continuous greedy algorithm. In fact,
(4.12) generalizes to a broader class of functions: it
holds as long as the objective f is, itself, multilinear.
Formally, a function, f : RN → R is multilinear if it is
affine w.r.t. each of its coordinates [40]. Put differently,
multilinear functions are polynomial functions in which
the degree of each variable in a monomial is at most 1;
that is, multilinear functions can be written as:

(4.13) g(x) =
∑
`∈I c`

∏
i∈J` xi,

where c` ∈ R for ` in some index set I, and subsets
J` ⊆ V .1 Clearly, both the coverage function (4.11)
and the multilinear relaxation (3.4) are multilinear in
their respective arguments.

Eq. (4.12) generalizes to any multilinear function.
In particular:

Lemma 4.1. Let f : RN → R+ be a multilinear
function and let x ∈ {0, 1}N be a random vector
of independent Bernoulli coordinates parameterized by
y ∈ [0, 1]N . Then, G(y) = Ex∼y[f(x)] = f(y).

The proof can be found in App. B.1. Lem. 4.1 immedi-
ately implies that all polytime-computable, submodular
multilinear functions behave like the coverage function:
computing their multilinear relaxation does not require

1By convention, if J` = ∅, we set
∏

i∈J` xi = 1.

Table 1: Notation Summary

R Set of real numbers
R+ Set of non-negative real numbers
G(V,E) Graph G with nodes V and edges E
V Ground set of N elements
f A monotone, submodular set function
I Collection of independent sets in 2V

M Matroid denoting the (V, I) pair
conv(·) Convex hull of a set
k Cardinality constraint of a uniform matroid
x Global item placement vector of xi’s in {0, 1}N
[x]+i Vector x with the ith coordinate set to 1
[x]−i Vector x with the ith coordinate set to 0
yi Probability of i ∈ S
y Vector of marginal probabilities yi’s in [0, 1]N

G(y) Multilinear extension with marginals y
hi An analytic function
gi A multilinear function
wi Weights in R
ĥL Polynomial estimator of hi of degree L

Ri,L Residual error of the estimator ĥL
f̂L(x) Polynomial estimator of f(x) of degree L

RL(x) Residual error vector of the polynomial estimator f̂L(x)

εi,L(y) Residual error of the estimator ∂Ĝ(y)/∂yi

ε(L) Bias of the estimator ∇̂G(y)
Influence Maximization

M Number of cascades
Facility Location

V Number of facilities
M Number of customers

Summarization
M Number of partitions

sampling. Hence, continuous greedy admits highly effi-
cient implementations in this setting. Our main contri-
bution is to extend this to a broader class of functions,
by leveraging Taylor series approximations. We discuss
this in detail in the next section.

5 Main Results

In this section, we show that Eq. (4.12) can be extended
to submodular objectives that can be expressed via com-
positions of analytic functions and multilinear functions.
In a nutshell, our approach is based on two observa-
tions: (a) when restricted to binary values, polynomi-
als of multilinear functions are themselves multilinear
functions, and (b) analytic functions are approximated
at arbitrary accuracy via polynomials. Exploiting these
two facts, we approximate the multilinear relaxation of
an arbitrary analytic function via an appropriate Taylor
series; the resulting approximation is multilinear and,
hence, directly computable without sampling.

5.1 Motivation and Intuition. We begin by es-
tablishing that polynomials of multilinear functions are
themselves multilinear functions, when restricted to bi-
nary values. Formally:

Lemma 5.1. The set of multilinear functions restricted

over the domain {0, 1}N is closed under addition, mul-
tiplication, and multiplication with a scalar.

Put differently, multilinear functions restricted over the
domain {0, 1}N form both a ring and a vector space.
The proof of Lem. 5.1 can be found in App. B.2. It is
important to note that multilinear functions are closed
under multiplication only when restricted to domain
{0, 1}N . The general set of multilinear functions f :
[0, 1]N → R+ is not closed under multiplication.

Lem. 5.1 has the following implication. Consider
a submodular function f : {0, 1} → R+ of the form
f(x) = h(g(x)) where g : RN → R is a multilinear func-
tion, and h : R → R+ is an analytic function (e.g., log,
exp, sin, etc.). As h is analytic, it can be approximated

by a polynomial ĥ around a certain value in its domain.
This gives us a way to estimate the multilinear relax-
ation of f without sampling. First, we approximate f by
replacing h with ĥ, getting f̂ = ĥ(g). As f̂ is the poly-
nomial of a multilinear function restricted to {0, 1}N ,

by Lem. 5.1, f̂ can also be expressed as a multilinear
function. Thus, G can be estimated without sampling
via the estimator Ĝ(y) , f̂(y).

In the remainder of this section, we elaborate
further on construction, slightly generalizing the setup,
and providing formal approximation guarantees.

5.2 Assumptions. Formally, we consider set func-
tions f : {0, 1}N → R+ that satisfy two assumptions:

Assumption 1. Function f : {0, 1}N → R+ is mono-
tone and submodular.

Assumption 2. Function f : {0, 1}N → R+ has form

f(x) =
∑M
j=1 wjhj(gj(x)),(5.14)

for some M ∈ N, and wj ∈ R, hj : [0, 1] → R+, and
gj : [0, 1]N → [0, 1], for j ∈ {1, . . . ,M}. Moreover, for
every j ∈ {1, . . . ,M}, the following hold:

1. Function gj : [0, 1]N → [0, 1] is multilinear.

2. There exists a polynomial ĥL : [0, 1]→ R of degree

L for L ∈ N, such that |hj(s) − ĥL(s)| ≤ Rj,L(s),
where limL→∞Rj,L(s) = 0, for all s ∈ [0, 1].

Asm. 2 implies that f can be written as a linear
combination of compositions of analytic functions hj
with multilinear functions gj . The former can be
arbitrarily well approximated by polynomials of degree
L; any residual error from this approximation converges
to zero as the degree of the polynomial increases.

Tab. 2 summarizes several problems that satisfy
Assumptions 1 and 2. We review each of these problems
in more detail in Sec. 6; in the remainder of this section,
we provide approximation guarantees for objectives that
satisfy these two assumptions.

5.3 A Polynomial Estimator. Given a function
f that satisfies Asm. 2, we construct the polynomial
estimator of f(x) of degree L via

f̂L(x) ,
∑M
j=1 wj ĥL(gj(x)).(5.15)

By Lem. 5.1, function f̂L : {0, 1}N → R can be ex-
pressed as a multilinear function. We define an estima-

tor ∇̂GL of the gradient of the multilinear relaxation G
as follows: for all i ∈ V ,

(∂̂GL/∂yi)
∣∣
y

= Ey[f̂L([x]+i)]− Ey[f̂L([x]−i)]

Lem. 4.1
= f̂L([y]+i)− f̂L([y]−i).(5.16)

We characterize the quality of this estimator via the
following theorem, whose proof is in App. C:

Theorem 5.1. Assume that function f satisfies

Asm. 2. Let ∇̂GL be the estimator of the mul-
tilinear relaxation given by (5.16), and define
RL(x) ,

∑
j |wj ||Rj,L(gj(x))| for x ∈ {0, 1}N .

Then,

(5.17)
∥∥∇G(y)− ∇̂GL(y)

∥∥
2
≤ ‖εL(y)‖2

where εL(y) = [εi,L(y)]Ni=1 ∈ RN and

εi,L(y) , Ey[RL([x]+i)] + Ey[RL([x]−i)].(5.18)

Moreover, limL→∞ ‖εL(y)‖2 = 0, uniformly on [0, 1]N .

The theorem implies that, under Asm. 2, we can
approximate ∇G arbitrarily well, uniformly over all y ∈
[0, 1]N . This approximation can be used in continuous
greedy, achieving the following guarantee:

Theorem 5.2. Assume a function f : {0, 1}N → R+

satisfies Assumptions 1 and 2. Then, consider Alg. 1,
in which ∇G(yK) is estimated via the polynomial esti-
mator given in (5.16). Then,

G(yK) ≥
(

1− 1

e

)
G(y∗)−Dε(L)− P

2K
,(5.19)

where K = (1/γ) is the number of iterations, y∗ is an
optimal solution to (3.5), D = maxy∈P (M) ‖y‖2 is the
diameter of the polymatroid, ε(L) = maxk ‖εL(yk)‖2 is
the bias of the estimator, and P = 2 maxx∈M f(x).

The proof can be found in App. D. Uniform convergence
in Thm. 5.1 implies that the estimator bias ε(L) con-
verges to zero. Hence, Thm. 5.2 implies that we can
obtain an approximation arbitrarily close to 1− 1/e, by
setting L and K appropriately.

We note that Thm. 5.2 provides a tighter guarantee
than the one achieved by Mahdian et al. [39] (see App. E

Table 2: Summary of problems satisfying Assumptions 1 & 2.

Input
gj : {0, 1}|V | → [0, 1]

x → gj(x)

hj : [0, 1] → R+

s → hj(s)
f : {0, 1}|V | → R+

x → f(x)

Bias

ε(L)

SM
Partitions

⋃M
j=1{Pj} = V

weights r ∈ RN+ , and
∑N
i=1 ri = 1

∑
i∈Pj

rixi log(1 + s)
M∑
j=1

h(sj)
M
√
N

(L+1)2L

IM

Instances G = (V,E)
of a directed graph,

partitions {P jv }Nj=1 ⊂ V

∑
i∈V

1
N

(
1−

∏
u∈P ji

(1− xu)
)

log(1 + s) 1
M

M∑
j=1

h(sj)
√
N

(L+1)2L

FL

Complete weighted bipartite
graph G = (V ∪ V ′)

weights wi`,j ∈ [0, 1]N×M

N∑̀
=1

(wi`,j − wi`+1,j)

(
1−

∏̀
k=1

(1− xik)

)
log(1 + s) 1

M

M∑
j=1

h(sj)
√
N

(L+1)2L

CN

Graph G = (V,E),
service rates µ ∈ RM+ ,

requests r ∈ R, Pj path of r,

arrival rates λ ∈ R|R|+

1
µj

∑
r∈R:j∈pr λ

r
∏kpr (v)
k′=1 (1− xprk,ir)

s
1−s

M∑
j=1

h(s0)−
M∑
j=1

h(sj) 2M
√
|V ||C| s̄

L+1

1−s̄

for a detailed comparison); in particular, they assume
that derivatives of functions hj are bounded; we make
no such assumption. This is an important distinction,
as none of the examples in Sec. 6/Tab. 2 have bounded
derivatives (see App. G.1).

5.4 Time Complexity. For all examples in Tab. 2,
the error ε(L) decays exponentially with L. Hence, to
achieve an approximation 1 − 1/e + ε, we must have
L = Θ

(
log
(

1
ε

))
. Hence, if multilinear functions gj ,

j ∈ {1, . . . ,M} are polynomially computable w.r.t N
(as is the case for our examples), the total number of

terms in f̂L will be polynomial in both N and 1
ε . We

further elaborate on complexity issues in App. F.

6 Examples.

In this section, we list three problems that can be tack-
led through our approach, also summarized in Tab. 2;
we also review cache networks (CN) in App. H.

6.1 Data Summarization (SM) [2, 6]. In data
summarization, ground set V is a set of tokens, rep-
resenting, e.g., sentences in a document or documents
in a corpus. The goal is to select a “summary” S ⊆ V
that is representative of V . We present here the diver-
sity reward function proposed by Lin and Bilmes [2].
Assume that each token i has a value ri ∈ [0, 1], where∑
i ri = 1. The summary S should contain tokens of

high value, but should simultaneously be diverse. The
authors achieve this by partitioning V to sets {Pj}Mj=1,
where each set Pj ⊂ V contains tokens that are similar.
They then seek a summary that maximizes

(6.20) f(S) =
∑M
j=1 h

(∑
i∈Pj∩S ri

)
,

where h : R+ → R+ is a non-decreasing concave
function (e.g., h(s) = log(1+s), h(s) = sα, where α < 1,
etc.). Intuitively, the use of h suppresses the selection
of similar items (in the same Pj), even if they have high

values, thereby promoting diversity.
Objective (6.20) is clearly of form (5.14). For

example, for h = log(1 + s), f is monotone and
submodular [2], and is the sum of compositions of
h with multilinear functions gj(x) =

∑
i∈Pj rixi, as

illustrated in Tab. 2. Moreover, h is analytic and can
be approximated within arbitrary accuracy by its Lth-
order Taylor approximation around 1/2, given by:

(6.21) ĥL(s) =
∑L
`=0

h(`)(1/2)
`! (s− 1/2)`.

We show in App. G.1 that this estimator ensures that f
indeed satisfies Asm. 2. Moreover, The estimator bias
appearing in Thm. 5.2 is also bounded:

Theorem 6.1. Assume a diversity reward function
f : {0, 1}N → R+ that is given by (6.20), with

h(s) = log(1+s). Then, consider the estimator ∇̂G(yK)

given in (5.16) using ĥL(x), the Lth Taylor polynomial
of f(x) around 1/2, given by (6.21). Then, the bias of

the estimator satisfies ε(L) ≤ M
√
N

(L+1)2L
.

The proof of this theorem can be found in App. G.1.
Our work directly allows for the optimization of such
objectives over matroid constraints. For example, a
partition matroid (distinct from {Pj}Mj=1) could be used
to enforce that no more than k` sentences come from `-
th paragraph, etc.

6.2 Influence Maximization (IM) [7, 41]. In-
fluence maximization problems can be expressed as
weighted coverage functions (see, e.g., [17]). In short,
given a directed graph G = (V,E), we wish to maximize
the expected fraction of nodes reached if we infect a set
of nodes S ⊆ V and the infection spreads via the Inde-
pendent Cascade (IC) model [7]. In our notation this
objective can be written as

f(x) = 1
M

∑M
j=1

1
N

∑
v∈V

(
1−

∏
i∈P jv (1− xi)

)
,(6.22)

where P jv ⊆ V is the set of nodes reachable from v
in a random simulation of the IC model. This is a
multilinear function. Our approach allows us to extend
this to maximizing the expectation of analytic functions
h of the fraction of infected nodes. For example, for
h(s) = log(1 + s), we get:

(6.23) gj(x) =
∑
v∈V

1
N

(
1−

∏
i∈P jv (1− xi)

)
,

for j = 1, . . . ,M , and

(6.24) f(x) = 1
M

∑M
j=1 h (gj(x)) .

Functions gj : [0, 1]N → [0, 1] are multilinear, monotone
submodular, and O(N2) computable, while h : [0, 1] →
R is non-decreasing and concave. As a result, (6.24)
satisfies Asm. 1. Again, h can be approximated within
arbitrary accuracy by its Lth-order Taylor approxima-
tion around 1/2, given by (6.21). This again ensures
that f indeed satisfies Asm. 2. Moreover, we bound the
estimator bias appearing in Thm. 5.2 as follows:

Theorem 6.2. For function f : {0, 1}N → R+ that

given by (6.24), consider the estimator ∇̂G given in

(5.16) using ĥL, the Lth-order Taylor approximation
of h around 1/2, given by (6.21). Then, the bias of

estimator ∇̂G satisfies ε(L) ≤
√
N

(L+1)2L
.

The proof of the theorem can be found in App. G.2.
Partition matroid constraints could be used in this
setting to bound the number of seeds from some group
(e.g., males/females, people in a zip code, etc.).

6.3 Facility Location (FL) [36, 42]. Facility loca-
tion is another classic example of submodular maxi-
mization [5]. Given a complete weighted bipartite graph
G = (V ∪ V ′) and weights wv,v′ ∈ [0, 1], v ∈ V , v′ ∈ V ′,
we wish to maximize:

(6.25) f(S) = 1
M

∑M
j=1 maxi∈S wi,j .

Intuitively, V and V ′ represent facilities and customers
respectively and wv,v′ is the utility of facility v for
customer v′. The goal is to select a subset of facility
locations S ⊂ V to maximize the total utility, assuming
every customer chooses the facility with the highest
utility in the selection S. This too becomes a coverage
problem by observing that maxi∈S wi,j equals [17]:

(6.26) gj(x) =

N∑
`=1

(wi`,j − wi`+1,j)
(
1−

∏̀
k=1

(1− xik)
)
,

where, for a given j ∈ V ′, weights have been pre-
sorted in a descending order as wi1,j ≥ . . . ≥ win,j

instance dataset M N
∑M

j=1 I J̄ m k f∗

IM IMsynth1 1 200 200 5.2 10 3 0.3722

IM IMsynth2 1 200 200 5.1 10 3 0.6031

FL FLsynth1 200 200 40000 4.3 10 5 0.5197

FL MovieLens 100 100 10000 4.6 10 4 0.5430

IM Epinions 10 100 1000 3.2 2 2 0.5492

SM SMsynth1 5 200 200 7.4 2 10 0.7669

Table 3: Datasets and Experiment Parameters.

and win+1,j , 0. We can again extend this problem to
maximizing analytic functions h of the utility of a user.
For example, for h(s) = log(1 + s), we can maximize

(6.27) f(x) = 1
M

∑M
j=1 log (1 + gj(x)) .

In a manner similar to the influence maximization prob-
lem, we can show that this function again satisfies
Assumptions 1 and 2, using the Lth-order Taylor ap-
proximation of g, given by (6.21). Moreover, as in
Thm. 6.2, the corresponding estimator bias is again

ε(L) ≤
√
N

(L+1)2L
. We can again therefore optimize such

an objective over arbitrary matroids, which can enforce,
e.g., that no more than k facilities are selected from a
geographic area or some other partition of V .

7 Experimental Study.

7.1 Experiment Setup. We execute Alg. 1 with
sampling and polynomial estimators over 6 different
graph settings and 3 different problem instances, sum-
marized in Tab. 3. Our code is publicly available.2

Influence Maximization. We experiment on two
synthetic datasets and one real dataset. For synthetic
data, we generate two bipartite graphs with |V1| =
|V2| = 100, |E| = 400 and M = 1. Seeds are always
selected from V1. We select the edges across V1 and
V2 u.a.r. (IMsynth1) or by a power law distribution
(IMsynth2). We construct a partition matroid of m =
10 equal-size partitions of V1 and set k = 3. The real
dataset is the Epinions dataset [43] on SNAP [44]. We
use the subgraph induced by the top N = 100 nodes
with the largest out-degree and use the IC model [7]
with M = 10 cascades. The probability for each node to
influence its neighbors is set to p = 0.02. We construct
a matroid of m = 2 equal-size partitions and set k = 5.
Facility Location. We experiment on one syn-
thetic and one real dataset. We generate a bipar-
tite graph with N = M = 200, |E| = 800 and
select the edges across V and V ′ u.a.r (FLsynth1).
Weights of the edges (wi,j) are selected randomly from
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We construct a matroid of
m = 10 equal-size partitions and set to k = 4. The real

2https://github.com/neu-spiral/WDNFFunctions

https://github.com/neu-spiral/WDNFFunctions

102 103 104

time (seconds)

2 1

2 2

2 3

2 4

er
r

POLY1
POLY2

SAMP1
SAMP10

SAMP100

(a) IMsynth1

10 1 100 101 102 103

time (seconds)

2 1

2 2

2 3

2 4

er
r

POLY1
POLY2
POLY3

SAMP1
SAMP10

SAMP100
SAMP1000

(b) IMsynth2

101 102 103 104 105

time (seconds)

2 1

2 2

2 3

2 4

er
r

POLY1
POLY2
POLY3

SAMP1
SAMP10

SAMP100
SAMP1000

(c) FLsynth1

102 103 104 105 106

time (seconds)

2 1

2 2

2 3

2 4

er
r

POLY1
POLY2

SAMP1
SAMP10

SAMP100
SAMP1000

(d) MovieLens

Figure 1: Trajectory of the FW algorithm. Utility of the
function at the current y as a function of time is marked for
every 10th iteration.

one is a subgraph of the MovieLens 1M dataset with
the top N = 100 users who rated the most movies and
the M = 100 movies chosen u.a.r. among the movies
rated by the user who rated the most movies [45]. In
this problem, we treat movies as facilities, users as cus-
tomers, and ratings as wi,j . We construct a matroid
of m = 10 partitions by dividing movies according to
their genres. We consider the first genre name listed if
a movie belongs to multiple genres and we set k = 2.
Summarization. We generate a synthetic dataset with
N = 200 nodes (SMsynth1). We assign a reward ri to
each node i u.a.r between [0, 1] and divide each ri with∑
i ri. We divide the nodes into M = 5 equal-size Pj .

We construct a matroid of m = 2 equal-size partitions
and set k = 10.
Algorithms. We compare the performance of different
estimators. These estimators are: (a) sampling estima-
tor (SAMP) with T = 1, 10, 100, 1000 and (b) polyno-
mial estimator (POLY) with L = 1, 2, 3.
Metrics. We measure the performance of the estima-
tors via err = (f(y)− f∗)/f∗, where f∗ = max f(y) is
the maximum utility achieved using the best estimator
for a given setting, and execution time. f∗ values are
reported on Table 3.

7.2 Results. The trajectory of the normalized dif-
ference between the utility obtained at each iteration
of the continuous greedy algorithm (err) is shown as

103 104

time (seconds)

0.020

0.015

0.010

0.005

0.000

er
r

POLY
SAMP

(a) IMsynth1

100 101 102 103

time (seconds)

0.05

0.04

0.03

0.02

0.01

0.00

er
r

POLY
SAMP

(b) IMsynth2

102 103 104 105

time (seconds)

0.008

0.006

0.004

0.002

0.000

er
r

POLY
SAMP

(c) FLsynth1

103 104 105 106

time (seconds)

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

er
r

POLY
SAMP

(d) MovieLens

104 105

time (seconds)

0.0020

0.0015

0.0010

0.0005

0.0000

er
r

POLY
SAMP

(e) Epinions

102 103 104

time (seconds)

0.003

0.002

0.001

0.000

er
r

POLY
SAMP

(f) SMsynth1

Figure 2: Comparison of different estimators on different
problems. Blue lines represent the performance of the POLY
estimators and the marked points correspond to POLY1,
POLY2, POLY3 respectively. Orange lines represent the
performance of the SAMP estimators and the marked points
correspond to SAMP1, SAMP10, SAMP100, SAMP1000
respectively.

a function of time in Figure 1. In Fig. 1(a), we see
that both POLY1 and POLY2 outperforms sampling
estimators. Moreover, POLY1 is almost 60 times faster
than SAMP100. In Fig. 1(b), POLY1 runs as fast as
SAMP1 and outperforms all estimators. It is impor-
tant to note that POLY3 runs 2.5 times faster than
SAMP1000. In Fig. 1(c), POLY1 visibly outperforms
SAMP1 and in Fig. 1(d) polynomial estimators give
comparable results to sampler estimators. Note that,
even though small number of samples give comparable
results, setting T ≤ 100, is below the value needed to at-
tain the theoretical guarantees of the continuous-greedy
algorithm. These comparable results can be explained
by the 1/2 approximation guarantee of the greedy algo-
rithm.

The err of the final results of the estimators are
reported as a function of time in Figure 2. In all fig-
ures except Fig. 2(a), POLY1 outperforms other estima-
tors in terms of time and/or utility whereas in Fig. 2(a)
POLY2 is the best performer. As the number of sam-
ples increases, the quality of the sampling estimators

increases and they catch up with the polynomial esti-
mators. However, considering the running time, POLY1
still remains the better choice.

8 Conclusion.

We have shown that polynomial estimators can replace
sampling of the multilinear relaxation. Our approach
applies to other tasks, including rounding (see App. I)
and stochastic optimization methods [17]. For example,
sampling terms of the polynomial approximation can
extend our method to even larger problems.

References

[1] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák,
“Maximizing a monotone submodular function subject
to a matroid constraint,” SICOMP, 2011.

[2] H. Lin and J. Bilmes, “A class of submodular functions
for document summarization,” in ACL, 2011.

[3] H. Lin and J. Bilmes, “Multi-document summarization
via budgeted maximization of submodular functions,”
in NAACL, 2010.

[4] M. Gygli, H. Grabner, and L. Van Gool, “Video
summarization by learning submodular mixtures of
objectives,” in CVPR, 2015.

[5] A. Krause and D. Golovin, “Submodular function
maximization,” in Tractability: Practical Approaches
to Hard Problems, Cambridge University Press, 2014.

[6] B. Mirzasoleiman, A. Badanidiyuru, and A. Karbasi,
“Fast constrained submodular maximization: Person-
alized data summarization.,” in ICML, 2016.

[7] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing
the spread of influence through a social network,” in
KDD, 2003.

[8] A. Krause, A. Singh, and C. Guestrin, “Near-optimal
sensor placements in gaussian processes: Theory, effi-
cient algorithms and empirical studies,” JMLR, 2008.

[9] Z. Jiang, G. Zhang, and L. S. Davis, “Submodular
dictionary learning for sparse coding,” in CVPR, 2012.

[10] F. Zhu, L. Shao, and M. Yu, “Cross-modality submod-
ular dictionary learning for information retrieval,” in
CIKM, 2014.

[11] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and
A. Krause, “Streaming submodular maximization:
Massive data summarization on the fly,” in KDD, 2014.

[12] G. L. Nemhauser and L. A. Wolsey, “Best algorithms
for approximating the maximum of a submodular set
function,” Mathematics of operations research, 1978.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An
analysis of approximations for maximizing submodular
set functions—i,” Mathematical programming, 1978.

[14] J. Vondrák, “Optimal approximation for the submod-
ular welfare problem in the value oracle model,” in
STOC, 2008.

[15] A. A. Ageev and M. I. Sviridenko, “Pipage rounding:
A new method of constructing algorithms with proven

performance guarantee,” Journal of Combinatorial Op-
timization, 2004.

[16] C. Chekuri, J. Vondrak, and R. Zenklusen, “Depen-
dent randomized rounding via exchange properties of
combinatorial structures,” in FOCS, 2010.

[17] M. Karimi, M. Lucic, H. Hassani, and A. Krause,
“Stochastic submodular maximization: The case of
coverage functions,” in NeurIPS, 2017.

[18] Y. Singer, “How to win friends and influence people,
truthfully: influence maximization mechanisms for
social networks,” in WSDM, 2012.

[19] M. Minoux, “Accelerated greedy algorithms for max-
imizing submodular set functions,” in Optimization
techniques, Springer, 1978.

[20] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani,
“Fast greedy algorithms in mapreduce and streaming,”
TOPC, 2015.

[21] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi,
J. Vondrák, and A. Krause, “Lazier than lazy greedy,”
in AAAI, 2015.

[22] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier,
“Maximizing social influence in nearly optimal time,”
in SODA, 2014.

[23] Y. Tang, Y. Shi, and X. Xiao, “Influence maximiza-
tion in near-linear time: A martingale approach,” in
SIGMOD, 2015.

[24] M. Feldman, J. Naor, and R. Schwartz, “A unified con-
tinuous greedy algorithm for submodular maximiza-
tion,” in FOCS, 2011.

[25] C. Chekuri, J. Vondrák, and R. Zenklusen, “Submod-
ular function maximization via the multilinear relax-
ation and contention resolution schemes,” SICOMP,
2014.

[26] A. Bian, K. Levy, A. Krause, and J. M. Buhmann,
“Continuous dr-submodular maximization: Structure
and algorithms,” in NeurIPS, 2017.

[27] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and
A. Krause, “Guaranteed non-convex optimization:
Submodular maximization over continuous domains,”
in AISTATS, 2017.

[28] C. Chekuri, T. Jayram, and J. Vondrák, “On multi-
plicative weight updates for concave and submodular
function maximization,” in ITCS, 2015.

[29] F. Bach, “Submodular functions: from discrete to con-
tinuous domains,” Mathematical Programming, 2019.

[30] R. Niazadeh, T. Roughgarden, and J. Wang, “Optimal
algorithms for continuous non-monotone submodular
and dr-submodular maximization,” in NeurIPS, 2018.

[31] T. Soma and Y. Yoshida, “Non-monotone dr-
submodular function maximization,” in AAAI, 2017.

[32] Y. Bian, J. Buhmann, and A. Krause, “Optimal con-
tinuous dr-submodular maximization and applications
to provable mean field inference,” in ICML, 2019.

[33] M. Staib and S. Jegelka, “Robust budget allocation via
continuous submodular functions,” in ICML, 2017.

[34] M. Skutella, “Convex quadratic and semidefinite pro-
gramming relaxations in scheduling,” JACM, 2001.

[35] H. Hassani, M. Soltanolkotabi, and A. Karbasi, “Gra-

dient methods for submodular maximization,” in
NeurIPS, 2017.

[36] A. Mokhtari, H. Hassani, and A. Karbasi, “Conditional
gradient method for stochastic submodular maximiza-
tion: Closing the gap,” in AISTATS, 2018.

[37] A. Mokhtari, H. Hassani, and A. Karbasi, “Stochastic
conditional gradient methods: From convex minimiza-
tion to submodular maximization,” JMLR, 2020.

[38] A. Asadpour, H. Nazerzadeh, and A. Saberi, “Stochas-
tic submodular maximization,” in WINE, 2008.

[39] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh,
“Kelly cache networks,” IEEE/ACM Transactions on
Networking, 2020.

[40] J. Broida and S. Williamson, A Comprehensive Intro-
duction to Linear Algebra. Advanced book program,
Addison-Wesley, 1989.

[41] W. Chen, Y. Wang, and S. Yang, “Efficient influence
maximization in social networks,” in KDD, 2009.

[42] G. Cornuejols, M. Fisher, and G. Nemhauser, “Loca-
tion of bank accounts of optimize float: An analytic
study of exact and approximate algorithm,” Manage-
ment Science, 1977.

[43] M. Richardson, R. Agrawal, and P. Domingos, “Trust
management for the semantic web,” in ISWC, 2003.

[44] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
large network dataset collection,” June 2014.

[45] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” TiiS, 2015.

A Rounding

Several poly-time algorithms can be used to round the
fractional solution that is produced by Alg. 1 to an in-
tegral x ∈ M. We briefly review two such rounding
algorithms: pipage rounding [15], which is determinis-
tic, and swap-rounding [16], which is randomized. As
in all the stated examples, the constraints are partition
matroids (see Sec. 3.1), here we limit our explanation
to this case. For a more rigorous treatment, we refer
the reader to [15] for pipage rounding, and [16] for swap
rounding.
Pipage Rounding. This technique uses the follow-
ing property of the multilinear relaxation G: given a
fractional solution y ∈ P (M), there are at least two
fractional variables yi and yi′ , where i, i′ ∈ Bj for
some j ∈ {1, . . . ,m}, such that transferring mass from
one to the other, (1) makes at least one of them 0 or
1, (2) the new ŷ remains feasible in P (M), and (3)
G(ŷ) ≥ G(y(1)), that is, the expected caching gain at
ŷ is at least as good as y. This process is repeated until
ŷ does not have any fractional elements, at which point
pipage rounding terminates and return ŷ. This proce-
dure has a run-time of O(N), and since (a) the starting
solution y is such that

G(y) ≥ (1− 1/e)G(y∗),

where y∗ is an optimizer of G in P (M), and (b) each
rounding step can only increase G, it follows that the
final integral ŷ ∈M must satisfy

f(ŷ) = G(ŷ) ≥ G(y) ≥ (1− 1

e
)G(y∗) ≥ (1− 1

e
)f(x∗),

where x∗ is an optimal solution to (3.3). Here, the first
equality holds because f and G are equal at integral
points, while the last inequality holds because (3.5) is a
relaxation of (3.3), maximizing the same objective over
a larger domain.

Note that pipage rounding requires evaluating the
multilinear relaxation G. This can be done via a sam-
pling estimator, but also using the Taylor estimator we
have constructed in our work. We present approxima-
tion guarantees for pipage rounding using our estimator
in App. I.
Swap rounding. In this method, given a fractional
solution y ∈ P (M) produced by Alg. 1 observe that
it can be written as a convex combination of integral
vectors in M, i.e., y =

∑K
k=1 γkmk, where γk ∈

[0, 1],
∑K
k=1 γk = 1, and mk ∈ M. Moreover, by

construction, each such vector mk is maximal, i.e., all
constraints in (3.2) are satisfied with equality.

Swap rounding iteratively merges these constituent
integral vectors, producing an integral solution. At each

iteration i, the present integral vector ck is merged with
mk+1 ∈ M into a new integral solution ck+1 ∈ M
as follows: if the two solutions ck, mk+1 differ at two
indices i, i′ ∈ Bj , for some j ∈ [m], (the former vector
is 1 at element i and 0 at i′, while the latter is 1 at i′

and 0 at i) the masses in the corresponding elements
are swapped to reduce the set difference. Either the
mass (of 1) in the i-th element of ck is transferred to
the i-th element of mk+1 and its i′ is set to 0, or the
mass in the i′ element of mk+1 is transferred to the
i-th element in ck and its i-th element is set to 0; the
former occurs with probability proportional to

∑k
`=1 γ`,

and the latter with probability proportional to γk+1.
The swapping is repeated until the two integer solutions
become identical; this merged solution becomes ck+1.
This process terminates after K − 1 steps, after which
all the points mk are merged into a single integral vector
cK ∈M.

Observe that, in contrast to pipage rounding, swap
rounding does not require any evaluation of the objec-
tive G during rounding. This makes swap rounding sig-
nificantly faster to implement; this comes at the expense
of the approximation ratio, however, as the resulting
guarantee 1− 1/e is in expectation.

B Proofs of Multilinear Function Properties

B.1 Proof of Lemma 4.1 As g is multilinear, it can
be written as g(x) =

∑
`∈I c`

∏
i∈J` xi, for some subset

I, c` ∈ R+, and index sets J` ⊆ {1, . . . , n}. Then,

Ey[g(x)] =
∑
`∈I c`Ey

[∏
i∈J` xi

]
=
∑
`∈I c`

∏
i∈J` Ey [xi] =

∑
`∈I c`

∏
i∈J` yi

= g(y).

B.2 Proof of Lemma 5.1 It is straightforward to
see that the lemma holds for addition and multiplication
with a scalar.

To proof that lemma holds for multiplication, let
two multilinear functions g1, g2 : {0, 1}N → R+,
given by g1(x) =

∑
`∈I1 c`

∏
i∈J` xi and g2(x) =∑

`′∈I2 c`′
∏
i∈J`′

xi. Observe that their product g1 · g2

is

g1(x)g2(x) =
∑

(`,`′)∈I1×I2

c`c`′
∏

i∈J`∩J`′

x2
i

∏
i∈J`4J`′

xi

where 4 is the symmetric set difference. Since
xi ∈ {0, 1}, x2

i = xi. Therefore,

g1(x)g2(x) =
∑

(`,`′)∈I1×I2 c`c`′
∏
i∈J`∪J`′

xi

is multilinear.

C Proof of Theorem 5.1

We start by showing that the norm of the residual error
vector of the estimator converges to 0. Recall that, by
Asm. 2 the residual error of the polynomial estimation
ĥj,L(s) is bounded by Rj,L(s). Thus, for functions
f : {0, 1}N → R+ satisfying Asm. 2, we have that

|f(x)− f̂L(x)| ≤ RL(x),(C.1)

where RL(x) ,
∑
j |wj ||Rj,L(gj(x))|. Since

limL→∞Rj,L(s) = 0 for all j ∈ M and s ∈ [0, 1],
and gj(x) ∈ [0, 1] for all j and x, we get that, for all
x ∈ {0, 1}N ,

lim
L→∞

|f(x)− f̂L(x)| ≤ lim
L→∞

RL(x) = 0.(C.2)

In fact, this convergence happens uniformly over all
x ∈ {0, 1}N , as {0, 1}N is a finite set. Moreover,∣∣∣∣∣∂GL(y)

∂yi
− ∂̂GL(y)

∂yi

∣∣∣∣∣ =
∣∣Ey[f([x]+i)]− Ey[f([x]−i)]

− Ey[f̂L([x]+i)] + Ey[f̂L([x]−i)]
∣∣

≤ Ey[|f([x]+i)− f̂L([x]+i)|]

+ Ey[|f([x]−i)− f̂L([x]−i)|]
(C.1)

≤ Ey[RL([x]+i)] + Ey[RL([x]−i)]

= εi,L(y),

where εi,L is given by (5.18). By the uniform con-
vergence (C.2), limL→∞ εi,L(y) = 0, also uniformly on
y ∈ [0, 1]N (as the expectation is a weighted sum, with
weights in [0, 1]). Setting εL(y) = [εi,L(y)]N ∈ RN , we
conclude that∥∥∇G(y)− ∇̂GL(y)

∥∥
2
≤ ‖εL(y)‖2

where limL→∞ ‖εL(y)‖ = 0, for all y ∈ [0, 1]N .

D Proof of Theorem 5.2

We begin by proving the following auxiliary lemma:

Lemma D.1. G is P-Lipschitz continuous with P =
2 maxx∈M f(x).

Proof.

|G(y)−G(y′)| =
∣∣∣ ∑
x∈{0,1}N

f(x)
∏
xi=1

yi
∏
xi=0

(1− yi)

−
∑

x∈{0,1}N
f(x)

∏
xi=1

y′i
∏
xi=0

(1− y′i)
∣∣∣

=
∣∣∣ ∑
x∈{0,1}N

f(x)
(∏
xi=1

yi
∏
xi=0

(1− yi)

−
∏
xi=1

y′i
∏
xi=0

(1− y′i)
)∣∣∣

≤
∑

x∈{0,1}N
|f(x)|

∣∣∣ ∏
xi=1

yi
∏
xi=0

(1− yi)

−
∏
xi=1

y′i
∏
xi=0

(1− y′i)
∣∣∣

≤ f(x)

(∑
x∈{0,1}N

∣∣∣ ∏
xi=1

yi
∏
xi=0

(1− yi)
∣∣∣

+
∑

x∈{0,1}N

∣∣∣ ∏
xi=1

y′i
∏
xi=0

(1− y′i)
∣∣∣)

≤ 2 max
x∈M

f(x).

The remainder of the proof follows the proof struc-
ture in [27]. Let m∗ , (y∗ ∨ y)− y = (y∗ − y)∨ 0 ≥ 0,
where x∨y , [max{xi, yi}]i. Since m∗ ≤ y∗ and P (M)
is down-closed, m∗ ∈ P (M). By Asm. 1, f is monotone.
Thus, G(y + m∗) = G(y∗ ∨ y) ≥ G(y∗). If we define
a uni-variate auxiliary function hy,m(ξ) , G(y + ξm∗),

where ξ ≥ 0,
dhy,m(ξ)

dξ = 〈m∗,∇G(y+ξm∗)〉. hy,m(ξ) is
concave because the multilinear relaxation G is concave
along non-negative directions due to submodularity of
f , given by Asm. 1. Hence,

hy,m(1)− hy,m(0) = G(y + m∗)−G(y)

≤ dhy,m(ξ)

dξ

∣∣∣∣∣
ξ=0

× 1 = 〈m∗,∇G(y)〉

(D.3)

For the kth iteration of the continuous greedy
algorithm, let mk , arg maxm∈P (M)〈m,∇ĜL(yk)〉,
yk ∈ P (M) be the output solution obtained by the
algorithm and y∗ be the optimal solution of (3.5). Since
yk is a convex linear combination of the points in P (M),
yk ∈ P (M). Using Thm. 5.1 for m ≥ 0, due to Asm. 2:

max
m∈P (M)

〈m,∇ĜL(yk)〉
(5.17)

≥

max
m∈P (M)

(mT∇G(yk)−mT εL(yk))

≥ max
m∈P (M)

mT∇G(yk)− max
m∈P (M)

mT εL(yk)

≥ max
m∈P (M)

mT∇G(yk)− max
m∈P (M)

‖m‖ ‖εL(yk)‖

due to Cauchy-Schwarz inequality. Replacing D =

maxm∈P (M) ‖m‖2 and ε(L) = maxk ‖εL(yk)‖2,

〈mk,∇ĜL(yk)〉 ≥ 〈m∗,∇G(yk)〉 −D ε(L)
(D.3)

≥ G(y + m∗)−G(y)−Dε(L)

≥ G(y∗)−G(yk)−Dε(L)

(D.4)

The uni-variate auxiliary function hy,m is P -
Lipschitz since the multilinear realization G is P -
Lipschitz by Lem. D.1. Then for hy,m(ξ) with P -
Lipschitz continuous derivative in [0, 1] where (P > 0),
we have

−P
2
ξ2 ≤ hy,m(ξ)− hy,m(0)− ξ∇hy,m(0)

= G(y + ξm)−G(y)− ξ〈m,∇G(y)〉
(D.5)

∀ξ ∈ [0, 1]. Hence the difference between the (k + 1)
th

and kth iteration becomes

G(yk+1)−G(yk) = G(yk + γkmk)−G(yk)

= hy,m(γk)− hy,m(0)
(D.5)

≥ γk〈m,∇G(y)〉 − P

2
γ2
k

(D.4)

≥ γk[G(y∗)−G(yk)]− γkDε(L)− P

2
γ2
k

Rearranging the terms,

G(yk+1)−G(y∗) ≥ (1− γk)[G(yk)−G(y∗)]

− γkDε(L)− P

2
γ2
k

If we sum up the inequalities ∀k = 0, 1, ... ,K − 1. We
get,

G(yK)−G(y∗) ≥
K−1∏
k=0

(1− γk)[G(0)−G(y∗)]

−Dε(L)

K−1∑
k=0

γk −
P

2

K−1∑
k=0

γ2
k

Knowing that
∑K−1
k=0 γk = 1, and 1− γk ≤ e−γk ,

G(y∗)−G(yK) ≤ e−
∑K−1
k=0 γk [G(y∗)−G(0)]

+Dε(L) +
P

2

K−1∑
k=0

γ2
k

Rearranging the terms,

G(yK) ≥
(

1− 1

e

)
G(y∗)−Dε(L)− P

2

K−1∑
k=0

γ2
k +

1

e
G(0)

(D.6)

In order to minimize
∑K−1
k=0 γ2

k when
∑K−1
k=0 γk = 1, La-

grangian method can be used. Let λ be the Lagrangian
multiplier, then

L(γ0, ..., γK−1, λ) =

K−1∑
k=0

γ2
k + λ

[K−1∑
k=0

γk − 1

]

For γ0 = ... = γK−1 = 1
K ,

∑K−1
k=0 γ2

k reaches its
minimum which is 1

K . Moreover, we have y0 = 0, and
hence G(y0) = 0. Rewriting (D.6),

G(yK) ≥
(

1− 1

e

)
G(y∗)−Dε(L)− P

2K

E Detailed Comparison to Bound by Mahdian
et al. [39]

We start by rewriting the bound provided by Mahdian
et. al. [39] with our notation. In App. C.2 of [39], given
a set of continuous functions {hj}j∈{1,...,M} where their
first L + 1 derivatives are in [0, 1), they give an upper
bound on the bias of the polynomial estimator given in
(5.16) as:

ε(L) ≤ 2MW

(L+ 1)!
,

where W = maxj∈{1,...,M},s′∈[0,1) h
(L+1)
j (s′). This state-

ment holds under the assumption that W is a finite con-
stant, independent of L. However, this does not hold for
h(s) = s

1−s and h(s) = log(1+s). In fact, for h(s) = s
1−s

and h(s) = log(1+s), W goes to infinity as L goes to in-
finity. In contrast, we make no such assumption on the
derivatives when providing a bound for the bias ε(L)
(see Appendices G.1, G.2, and H).

F Complexity

The continuous-greedy algorithm described in Alg. 1

runs for K = 1/γ iterations. In each iteration, ∇̂GL is

calculated and (3.6) is solved with that ∇̂GL. The com-

plexity of calculating ∇̂GL is polynomial with the size
of the ground set, N , with the total number of mono-
mials in (4.13),

∑M
j=1 I, and with the average number

of variables appearing in each monomial, J̄ . For poly-
matroids, solving (3.6) amounts to solving a linear pro-
gram, which can also be done in polynomial time that
depends on the type of matroid [1]. Specifically for
partition matroids however, the solution has a simple
water-filing property, and can be obtained N logN time
by sorting the gradient elements corresponding to each
partition. Hence, for partition matroids, the entire algo-
rithm takes O(K(N(

∑M
j=1 I)J̄ +m(N logN +k+m)))

steps where m is the number of partitions and k is the
constraint on each partition.

G Proofs of Example Properties

G.1 Proof of Theorem 6.1. We begin by charac-
terizing the residual error of the Taylor series of h(s) =
log(1 + s) around 1/2:

Lemma G.1. Let ĥL(s) be the Lth order Taylor approx-
imation of h(s) = log(1+s) around 1/2, given by (6.21).

Then, ĥ, satisfies the second condition of Asm. 2, with
residuals:

(G.7) Rj,L(s) =
1

(L+ 1)2L+1
.

Proof. By the Lagrange remainder theorem,

∣∣∣hi(s)− ĥL(s)
∣∣∣ =

∣∣∣∣∣h(L+1)
i (s′)

(L+ 1)!

(
s− 1

2

)L+1
∣∣∣∣∣

=

∣∣∣∣∣ (s− 1/2)
L+1

(L+ 1) (1 + s′)
L+1

∣∣∣∣∣
for some s′ between s and 1/2. Since s ∈ [0, 1], (a)

|s− 1
2 | ≤

1
2 , and (b) s′ ∈ [0, 1]. Hence

∣∣∣hi(s)− ĥi,L(s)
∣∣∣ ≤

1
(L+1)2L+1 .

To conclude the theorem, observe that:

εi,L(y) = Ey[RL([x]+i)] + Ey[RL([x]+i)]

= 2Ey

[∑M
i=1 |Ri,L(si)|

]
≤ 2Ey

[∑M
i=1

1
(L+1)2L+1

]
=

2M

(L+ 1)2L+1

Then, ε(L) ≤ M
√
N

(L+1)2L
.

G.2 Proof of Theorem 6.2. To prove the theorem,
observe that:

εi,L(y) = Ey[RL([x]+i)] + Ey[RL([x]−i)]

≤ 2Ey

[∑M
i=1

1
M(L+1)2L+1

]
=

1

(L+ 1)2L

Hence, for all y ∈ [0, 1]N , ε(L) ≤
√
N

(L+1)2L
.

H Example: Cache Networks (CN) [39].

A Kelly cache network can be represented by a graph
G(V,E), |E| = M , service rates µj , j ∈ E, storage
capacities cv, v ∈ V , a set of requests R, and arrival
rates λr, for r ∈ R. Each request is characterized by
an item ir ∈ C requested, and a path pr ⊂ V that
the request follows. For a detailed description of these
variables, please refer to [39]. Requests are forwarded
on a path until they meet a cache storing the requested

item. In steady-state, the traffic load on an edge (u, v)
is given by

(H.8) g(u,v)(x) =
1

µu,v

∑
r∈R:(v,u)∈pr

λr
kpr (v)∏
k′=1

(1−xprk,ir).

where x ∈ {0, 1}|V ||C| is a vector of binary coordinates
xvi indicating if i ∈ C is stored in node v ∈ V . If s is the
load on an edge, the expected total number of packets
in the system is given by h(s) = s

1−s . Then using the
notation j = (u, v) ∈ E to index edges, the expected
total number of packets in the system in steady state
can indeed be written as

∑M
j=1 hj(gj(x)) [39]. Mahdian

et al. maximize the caching gain f : {0, 1}|V ||C| → R+

as

(H.9) f(x) =
∑M
j=1 hj(gj(0))−

∑M
j=1 hj(gj(x))

subject to the capacity constraints in each class. The
caching gain f(x) is monotone and submodular, and
the capacity constraints form a partition matroid [39].
Moreover, h(s) = s

1−s can be approximated within ar-

bitrary accuracy by its Lth-order Taylor approximation
around 0, given by:

(H.10) ĥL(s) =
∑L
`=1 s

`

We show in the following lemma that this estimator
ensures that f indeed satisfies Ass. 2:

Lemma H.1. Let ĥj,L(s) be the Lth Taylor polynomial
of hj(s) = s

1−s around 0. Then, hj(s) and its polyno-

mial estimator of degree L, ĥL(s), satisfy Asm. 2 where

(H.11) Rj,L(s) ≤ s̄L+1

1− s̄
.

Lth Taylor polynomial of hi(s) around 0 is

(H.12) ĥL(s) =
∑L
l=0

h
(`)
i (0)

`! s` =
∑L
`=1 s

`

where h
(`)
i (s) = `!

(1−s)`+1 for fi(s) = s
1−s .

hi(s) =
s

1− s
=
∑∞
`=1 s

` =
∑L
`=1 s

` +
∑∞
`=L+1 s

`

=
∑L
`=1 s

` + sL
∑∞
`=1 s

` =
∑L
`=1 s

` + sL+1

1−s

Then, the bias of the Taylor Series Estimation around
0 becomes:∣∣∣∣ s

1− s
−
∑L
n=1 s

n

∣∣∣∣ =
sL+1

1− s
≤ s̄L+1

1− s̄
= Ri,L(s).

for all s ∈ [0, s̄] where s̄ = maxi∈M si.

Furthermore, we bound the estimator bias appear-
ing in Thm. 5.2 as follows:

Theorem H.1. Assume a caching gain function
f : {0, 1}|V ||C| → R+ that is given by (H.9). Then,
consider Algorithm 1 in which ∇G(yK) is estimated via

the polynomial estimator given in (5.16) where f̂L(x)
is the Lth Taylor polynomial of f(x) around 0. Then,
the bias of the estimator is bounded by

(H.13) ε(L) ≤ 2M
√
|V ||C| s̄

L+1

1− s̄
,

where s̄ < 1 is the largest load among all edges when
caches are empty.

Proof. Since limL→∞
s̄L+1

1−s̄ = 0, for all s̄ ∈ [0, 1), Taylor
approximation gives an approximation guarantee for
maximizing the queue size function by Asm. 2, where
the error of the approximation is given by Thm. 5.1 as

εi,L(y) = 2Ey[RL([x]+i)] + Ey[RL([x]+i)]

= Ey

[∑M
i=1 |Ri,L(si)|

]
≤ 2Ey

[∑M
i=1

s̄L+1

1−s̄

]
= 2M

s̄L+1

1− s̄

Then, ε(L) ≤ 2M
√
|V ||C| s̄

L+1

1−s̄ .

I Pipage Rounding via Taylor Estimator

As explained, each step of pipage rounding requires
evaluating the multilinear relaxation G(ŷ), which is
generally infeasible and is usually computed via the
time-consuming sampling estimator (see Sec. 3.3). Here
we show that these evaluations can be alternatively done
via the polynomial estimator, while having theoretical
guarantees. First note that similar to the case of
gradients in Thm. 5.1 the difference between G and the
multilinear relaxation of polynomial estimator Ĝ(y) ,
Ex∼y[f̂L(x)] = f̂L(y) is bounded:

|G(y)− Ĝ(y)| ≤ Ex∼y[RL(x)] ≤ R̄L,(I.14)

where R̄L , maxy∈P (M) Ex∼y[RL(x)]. Again similar to
the proof in App. C and due to the uniform convergence
in (C.2) it holds that that limL→∞ R̄L = 0. Now we
can show our main result on pipage rounding via our
polynomial estimator.

Theorem I.1. Given a fractional solution y ∈ P (M)
the pipage rounding method in which the polynomial
estimator Ĝ is used instead of G terminates in O(N)
rounds and the obtained solution ŷ ∈ M satisfies the
following

G(ŷ) ≥ G(y)− 2(N + 1)R̄L.

Proof. At round k, given a solution y(k) ∈ P (M) due
to the properties of the multilinear relaxation there
exists a point ŷ(k), s.t., (a) G(ŷ(k)) ≥ G(y(k)) and (b)
ŷ(k) has at least one less fractional element, i.e., {j ∈
{1, . . . , N} |y(k)

j ∈ {0, 1}} ⊂ {j ∈ {1, . . . , N} | ŷ(k)
j ∈

{0, 1}} [15]. From (I.14) and (a) we have the following:

Ĝ(ŷ(k))
(I.14)

≥ G(ŷ(k))− R̄L
(a)

≥ G(y(k))− R̄L
(I.14)

≥ Ĝ(y(k))− 2R̄L,(I.15)

in other words the estimated objective at ŷ(k) is at most
2R̄L worse than the estimated value at y(k). Now given
input to pipage rounding as y(0) = y and at each round
setting y(k+1) = ŷ(k) from (I.15) we have that:

Ĝ(y(k)) ≥ Ĝ(y(0))− 2kR̄L
(I.14)

≥ G(y(0))− 2kR̄L − R̄L.

(I.16)

Furthermore, from (b) it follows that this process ends
at k∗ ≤ N rounds as y(0) has at most N fractional
elements. Plus, for the final solution ŷ = y(k∗) it holds
that:

G(ŷ)
(I.14)

≥ Ĝ(ŷ)− R̄L
(I.16)

≥ G(y)− 2(k∗ + 1)R̄L

≥G(y)− 2(N + 1)R̄L.

	Introduction.
	Related Work.
	Technical Preliminaries.
	Submodularity and Matroids.
	Submodular Maximization Subject to Matroid Constraints.
	Continuous Greedy Algorithm.

	Multilinear Functions.
	Main Results
	Motivation and Intuition.
	Assumptions.
	A Polynomial Estimator.
	Time Complexity.

	Examples.
	Data Summarization (SM)lin2011class, mirzasoleiman2016fast.
	Influence Maximization (IM) kempe2003maximizing, chen2009efficient.
	Facility Location (FL)mokhtari2018conditional, cornuejols1977location.

	Experimental Study.
	Experiment Setup.
	Results.

	Conclusion.
	Rounding
	Proofs of Multilinear Function Properties
	Proof of Lemma 4.1
	Proof of Lemma 5.1

	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Detailed Comparison to Bound by Mahdian et al. mahdian2020kelly
	Complexity
	Proofs of Example Properties
	Proof of Theorem 6.1.
	Proof of Theorem 6.2.

	Example: Cache Networks (CN)mahdian2020kelly.
	Pipage Rounding via Taylor Estimator

