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Submodular Function Maximization

* Submodular function: set
function with diminishing
returns

VACBCV,eeV

f(BU{e}) = f(B) < f(AU{e}) — f(A)

* Examples: facility location,
document summarization,
influence maximization
maximum coverage etc.
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Stochastic Submodular Maximization

* No access to the function
oracle

f(S) =E.vp|f-(9)

* Only sample a random fz()
at a time
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Influence Maximization

f(S) =E.vp|f-(5) .\ .

. G = (V,E) \

* FinitesetV={1, 2...,n}

* Independent Cascades or Linear
Threshold [Kempe et al., 2003]

* f, (S) is the fraction of nodes
that are reachable by infecting
theseedsS C IV




Approximation Algorithms for Stochastic Submodular
Maximization

Concave relaxation method achieves 1 — 1/e approximation ratio only for
coverage functions [Karimi et al., 2017].

Projected gradient methods for general submodular problems achieve 1/2
approximation ratio [Hassani et al., 2017].

The stochastic continuous greedy algorithm improves this and achieves 1 —
1/e approximation ratio on general matroids in poly-time [Mokhtari et al., 2020].




Challenges

e Stochastic Continuous Greedy (SCG) [Mokhtari et al., 2020] uses the
multilinear relaxation

G(y) = Esylf(5)] = Es~y [Eznplf2(5)]

P(i € S) = y;, where y; € [0, 1]

e Sampling S to compute the multilinear relaxation (computationally
expensive)

* Having two sources of randomness leads to high variance




Submodular Maximization via Taylor Series
Approximation [Ozcan et al., 2021]

* Multilinear relaxation of a polynomial function is still a
polynomial function.

* G(y) is computed efficiently is f is well approximated by a

polynomial.
polynomial polynomial

Ex~ylp(x)] = Ex~y[p(x)] = p(y)
1 €S +— r; =1




Our Contributions

« We extend the notion of polynomial estimators of multilinear relaxations [Ozcan

et al., 2021] to stochastic submodular optimization
* No sampling

* One source of randomness

* Theoretical guarantees

e Bias/variance trade off
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Stochastic Setting

* Discrete stochastic submodular
maximization

e Set function f: 2V - R, of
the form:

f(S) — 432~P[fz(s)]

where S € I/, where z is the
realization of the random
variable Z is drawn from a
distribution P.

* For each realization of z ~ P,
f: 2V > R, is monotone and
submodular.

* Objective is:

where 7/ is a general matroid
constraint.




Binary Notation

* Binary vector x whose supportis S:

SCV «— ze{0,1}"

1 €S <— x; =1
1 ¢S <— x; =0

max f(5) || «— || max f(x)

Sel xcl
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Stochastic Continuous Greedy Algorithm
[Mokhtari et al., 2020]

Multilinear relaxation
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Assumptions

1) Function f:{0,1}¥> R,: f(S) = E, . p[f,(S)] is monotone and
submodular.

2) Elements in the constraint set C are uniformly bounded, i.e.,

HyH <D.
3) Forallx € {0,1}", there exists €,(L) = 0 such that Lli_r)rolo ,(L)=20
and A
f2(x) = f(x)| < e(L).
\/
A L bias

f. (+): polynomial estimator of f,(-)
L: degree of the polynomial
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Variance of the Gradients

* Variance of the unbiased gradients [Mokhtari et al., 2020]:
o? = supE ||[VG.(y) - G(y)|?|
yeCl

* Variance of the biased gradients:

ot = swpE.p ||IVG.(y) = VG(y)|?]

yeC
* Mean bias:

(L) = E.vp ez(L)
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Main Theorem

e Assume a function f:{0, 1} > R, satisfies these assumptions. Then,
consider the stochastic continuous greedy algorithm in which G(y) is
estimated via the sample or the polynomial estimator. Then,

15DK  fpaxrD?
T1/3 2T

2[Gyr)] > (1 - 1/e)OPT

Unbiased version: K ~ 40 + V37 fmax D

Biased version: K ~ \/1603 + 224+/ne(L) + 2v/T fraxD




Examples

Input g- : {0,1}IV1 = [0,1] fo A0 VI S Ry |7 {0,13V - Ry |  Bias
x — gz(x) x = f(x) x = f(x) e(L)
Weighted bipartite graph E}]=1 h(g.(x)), )
SM|G = (V U P) weights r, € RY, 2ievnp; TizTi where h* (g2 (%)) (L+1;2er1
and > ri.=1 h(s) = log(1 + s)
Instances G = (V, E) h(g9-(x))
IM of a directed graph, >~ (1 — I - a:u)> where hE(g.(x)) m
partitions P C V eV ueb? h(s) = log(1 + s)
Complete weighted bipartite | , p h(g92(x)) )
FL graph G = (VUV’) > (Wiy,z — Wiy, ,,2) (1 — 11— a:,k)) where h*(g.(x)) m
weights w;, . € [0,1]V¥I#l  |¢=1 k=1 h(s) = log(1 + s)
Graph G = (V, E),
service rates u € lel, 1 r kpr (v) h(g:(0)) — h(g-(x)) ~ sL+1
CN requests r € R, P, path of r, | #= dorerizepr N k=1 (1 —zprir) \_Nhere h™(g92(x)) TS
. IR h(s) =s/(1—s)
arrival rates A € R
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Conclusion & Future Work

* We propose an alternative to the sampling estimator
e polynomial,
* achieves 1 — 1/e approximation ratio,
* with only one source of randomness.

* A similar extension can be made to the online setting with regret
analysis.
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