Stochastic Submodular Maximization via Polynomial Estimators

Gözde Özcan, Stratis Ioannidis

Department of Electrical and Computer Engineering
May 26, 2023

Submodular Function Maximization

• Submodular function: set function with diminishing returns

$$\forall A \subseteq B \subseteq V, e \in V$$

$$f(B \cup \{e\}) - f(B) \le f(A \cup \{e\}) - f(A)$$

• Examples: facility location, document summarization, influence maximization maximum coverage etc.

Stochastic Submodular Maximization

No access to the function oracle

$$f(S) = \mathbb{E}_{z \sim P}[f_z(S)]$$

• Only sample a random $f_z(\cdot)$ at a time

Influence Maximization

$$f(S) = \mathbb{E}_{z \sim P}[f_z(S)]$$

- G = (V, E)
- Finite set $V = \{1, 2, ..., n\}$
- Independent Cascades or Linear Threshold [Kempe et al., 2003]
- $f_Z(S)$ is the fraction of nodes that are reachable by infecting the seeds $S \subseteq V$

Approximation Algorithms for Stochastic Submodular Maximization

Concave relaxation method achieves 1 - 1/e approximation ratio only for coverage functions [Karimi et al., 2017].

Projected gradient methods for general submodular problems achieve 1/2approximation ratio [Hassani et al., 2017].

The <u>stochastic continuous greedy</u> algorithm improves this and achieves 1 - 11/e approximation ratio on general matroids in poly-time [Mokhtari et al., 2020].

Challenges

• Stochastic Continuous Greedy (SCG) [Mokhtari et al., 2020] uses the multilinear relaxation

$$G(\mathbf{y}) = \mathbb{E}_{S \sim \mathbf{y}}[f(S)] = \mathbb{E}_{S \sim \mathbf{y}}[\mathbb{E}_{z \sim P}[f_z(S)]]$$

$$P(i \in S) = y_i, \text{ where } y_i \in [0, 1]$$

- Sampling S to compute the multilinear relaxation (computationally expensive)
- Having two sources of randomness leads to high variance

Submodular Maximization via Taylor Series Approximation [Özcan et al., 2021]

• Multilinear relaxation of a polynomial function is still a polynomial function.

• G(y) is computed efficiently is f is well approximated by a

polynomial.

$$i \in S \iff x_i = 1$$

$$i \notin S \iff x_i = 0$$

Our Contributions

- We extend the notion of polynomial estimators of multilinear relaxations [Özcan et al., 2021] to stochastic submodular optimization
 - No sampling
 - One source of randomness
- Theoretical guarantees
 - Bias/variance trade off

Outline

- Stochastic Setting
- Polynomial Estimator & Main Theorem
- Conclusion & Future Work

Stochastic Setting

- Discrete stochastic submodular maximization
- Set function $f: 2^V \to \mathbb{R}_+$ of the form:

$$f(S) = \mathbb{E}_{z \sim P}[f_z(S)]$$

where $S \subseteq V$, where z is the realization of the random variable Z is drawn from a distribution P.

- For each realization of $z \sim P$, $f_z \colon 2^V \to \mathbb{R}_+$ is monotone and submodular.
- Objective is:

$$\max_{S \in \mathcal{I}} f(S) = \max_{S \in \mathcal{I}} \mathbb{E}_{z \sim P}[f_z(S)],$$

where \mathcal{I} is a general matroid constraint.

Binary Notation

• Binary vector **x** whose support is S:

$$S \subset V \iff x \in \{0, 1\}^N$$
$$i \in S \iff x_i = 1$$
$$i \notin S \iff x_i = 0$$

$$\max_{S \in \mathcal{I}} f(S) \iff \max_{\mathbf{x} \in \mathcal{I}} f(\mathbf{x})$$

Stochastic Continuous Greedy Algorithm

[Mokhtari et al., 2020]

Outline

- Stochastic Setting
- Polynomial Estimator & Main Theorem
- Conclusion & Future Work

Assumptions

- 1) Function $f:\{0,1\}^N \to \mathbb{R}_+$: $f(S) = \mathbb{E}_{Z \sim P}[f_Z(S)]$ is monotone and submodular.
- 2) Elements in the constraint set C are uniformly bounded, i.e., $||y|| \le D$.
- 3) For all $x \in \{0,1\}^n$, there exists $\varepsilon_Z(L) \ge 0$ such that $\lim_{L \to \infty} \varepsilon_Z(L) = 0$ and

$$|f_z(\mathbf{x}) - \hat{f}_z^L(\mathbf{x})| \le \varepsilon_z(L).$$

bias

 $\hat{f}_z^L(\cdot)$: polynomial estimator of $f_z(\cdot)$

L: degree of the polynomial

Variance of the Gradients

• Variance of the unbiased gradients [Mokhtari et al., 2020]:

$$\sigma^{2} = \sup_{\mathbf{y} \in \mathcal{C}} \mathbb{E} \left[\|\widehat{\nabla G_{z}(\mathbf{y})} - G(\mathbf{y})\|^{2} \right]$$

Variance of the biased gradients:

$$\sigma_0^2 = \sup_{\mathbf{y} \in \mathcal{C}} \mathbb{E}_{z \sim P} \left[\left\| \nabla G_z(\mathbf{y}) - \nabla G(\mathbf{y}) \right\|^2 \right]$$

Mean bias:

$$\varepsilon(L) = \mathbb{E}_{z \sim P} \left[\varepsilon_z(L) \right]$$

Main Theorem

• Assume a function $f: \{0, 1\}^N \to \mathbb{R}_+$ satisfies these assumptions. Then, consider the stochastic continuous greedy algorithm in which G(y) is estimated via the sample or the polynomial estimator. Then,

$$\mathbb{E}[G(\mathbf{y}_T)] \ge (1 - 1/e)OPT - \frac{15DK}{T^{1/3}} - \frac{f_{\max}rD^2}{2T}$$

Unbiased version: $K \approx 4\sigma + \sqrt{3r} f_{\text{max}} D$

Biased version: $K \approx \sqrt{16\sigma_0^2 + 224\sqrt{n}\varepsilon(L)} + 2\sqrt{r}f_{\max}D$

Examples

	Input	$g_z: \{0,1\}^{ V } \to [0,1]$ $\mathbf{x} \to g_z(\mathbf{x})$	$f_z: \{0,1\}^{ V } \to \mathbb{R}_+$ $\mathbf{x} \to f_z(\mathbf{x})$	$ \hat{f}_z^L : \{0, 1\}^{ V } \to \mathbb{R}_+ \\ \mathbf{x} \to \hat{f}_z^L(\mathbf{x}) $	$\mathrm{Bias} \ arepsilon(L)$
SM	Weighted bipartite graph $G = (V \cup P)$ weights $\mathbf{r}_z \in \mathbb{R}^n_+$, and $\sum_{i=1}^n r_{i,z} = 1$	$\sum_{i \in V \cap P_j} r_{i,z} x_i$	$\sum_{j=1}^{J} h(g_z(\mathbf{x})),$ where $h(s) = \log(1+s)$	$\hat{h}^L(g_z(\mathbf{x}))$	$\frac{1}{(L+1)2^{L+1}}$
IM	Instances $G = (V, E)$ of a directed graph, partitions $P_v^z \subset V$	$\sum_{i \in V} \frac{1}{N} \left(1 - \prod_{u \in P_i^z} (1 - x_u) \right)$	$h(g_z(\mathbf{x}))$ where $h(s) = \log(1+s)$	$\hat{h}^L(g_z(\mathbf{x}))$	$\frac{1}{(L+1)2^{L+1}}$
FL	Complete weighted bipartite graph $G = (V \cup V')$ weights $w_{i_{\ell},z} \in [0,1]^{N \times z }$	$\sum_{\ell=1}^{N} (w_{i_{\ell},z} - w_{i_{\ell+1},z}) \left(1 - \prod_{k=1}^{\ell} (1 - x_{i_k})\right)$	$h(g_z(\mathbf{x}))$ where $h(s) = \log(1+s)$	$\hat{h}^L(g_z(\mathbf{x}))$	$\frac{1}{(L+1)2^{L+1}}$
CN	Graph $G = (V, E)$, service rates $\mu \in \mathbb{R}_{+}^{ z }$, requests $r \in \mathcal{R}$, P_z path of r , arrival rates $\lambda \in \mathbb{R}_{+}^{ \mathcal{R} }$	$\frac{1}{\mu_z} \sum_{r \in \mathcal{R}: z \in p^r} \lambda^r \prod_{k'=1}^{k_{p^r}(v)} (1 - x_{p_k^r, i^r})$	$h(g_z(0)) - h(g_z(\mathbf{x}))$ where $h(s) = s/(1-s)$	$\hat{h}^L(g_z(\mathbf{x}))$	$\frac{\bar{s}^{L+1}}{1-\bar{s}}$

Outline

- Stochastic Setting
- Polynomial Estimator & Main Theorem
- Conclusion & Future Work

Conclusion & Future Work

- We propose an alternative to the sampling estimator
 - polynomial,
 - achieves 1 1/e approximation ratio,
 - with only one source of randomness.
- A similar extension can be made to the online setting with regret analysis.

Thank you!

