

Northeastern University

The 38th Annual AAAI Conference on Artificial Intelligence, February 20-27, 202

 $0.88 \quad 2.40 \times 10^{-3}$

 $0.846 \quad 3.98 \times 10^{-2}$

 $0.926 \quad 2.34 \times 10^{-2}$

98 0.749 3.21×10^{-2}

98 0.889 5.20×10^{-2}

 $33 \quad 0.984 \quad 7.05 \times 10^{-3}$

99 0.995 2.01×10^{-3}

 $33 \mid 0.98 \mid 3.48 \times 10^{-3} \mid$

99 0.993 1.11×10^{-3}

 $66 \quad 0.990 \quad 1.75 \times 10^{-3} \quad 3$

0.419 196 0.872 2.12×10^{-2} 0.5

200 66 0.994 3.87×10^{-3}

0.407 196 **0.786** 3.82×10^{-2} 0.5

149

293

293

S

Online Submodular Maximization via Online Convex Optimization Tareq Si Salem,¹ Gözde Özcan,¹ Iasonas Nikolaou,² Evimaria Terzi,² Stratis Ioannidis¹

¹Northeastern University, Boston, MA, USA ²Boston University, Boston, MA, USA

Main Contributions

• We provide a methodology for **reducing online submodular** maximization (OSM) problems to online convex optimization (OCO) problems, under a certain condition.

• We show that this condition is satisfied by a wide class of submodular functions called weighted threshold potential

• We establish that our reduction extends to **the dynamic**

• We also provide a different reduction for the **bandit setting**, for static, dynamic regret, and optimistic variants.

Case of General Set Functions

• We can **reduce** any **OSM problem** to an **OCO problem**, when the reward functions satisfy a specific property.

Assumption: Sandwich Property

There exists an $\alpha \in (0, 1]$, an $L \in \mathbb{R}_{>0}$, and a **randomized round**ing $\Xi : \mathcal{Y} \to \mathcal{X}$ such that, for every $f : \mathcal{X} \to \mathbb{R}_{>0} \in \mathcal{F}$ there

> $\tilde{f}(\mathbf{x}) \geq f(\mathbf{x}), \quad \text{for all } \mathbf{x} \in \mathcal{X}, \text{ and}$ $\mathbb{E}_{\Xi}[f(\Xi(\mathbf{y}))] \ge \alpha \cdot \tilde{f}(\mathbf{y}), \quad \text{ for all } \mathbf{y} \in \mathcal{Y}.$

RAOCO for General Set Functions

If this property holds, we can convert any OCO policy ${\cal P}_{\cal Y}$ operating over $\mathcal{Y} = \operatorname{conv}(\mathcal{X})$ to a **Randomized-rounding Aug**mented OCO (RAOCO) policy, denoted by $\mathcal{P}_{\mathcal{X}}$, operating over \mathcal{X} . The RAOCO policy amounts to (a) running $\mathcal{P}_{\mathcal{Y}}$ over the **con**cave relaxations $f_t(\cdot)$, and (b) rounding the decision via Ξ . For-

$$\mathbf{y}_{t} = \mathcal{P}_{\mathcal{Y},t} \left((\mathbf{y}_{s})_{s=1}^{t-1}, (\tilde{f}_{s})_{s=1}^{t-1} \right)$$
$$\mathbf{x}_{t} = \Xi(\mathbf{y}_{t}) \in \mathcal{X}.$$

Theorem 1: If the sandwich property holds, given an OCO policy

 α -regret_T ($\boldsymbol{\mathcal{P}}_{\mathcal{X}}$) $\leq \alpha \cdot \operatorname{regret}_{T} (\boldsymbol{\mathcal{P}}_{\mathcal{Y}})$.

Hence, OCO policies such as OGA, OMA, and FTRL combined with

RAOCO-OMA				FSF*				TabularGreedy				Random		
$\bar{F}_{\mathcal{X}}/F^{\star}$	std. dev.	η	γ	$\bar{F}_{\mathcal{X}}/F^{\star}$	std. dev.	η	γ	$\bar{F}_{\mathcal{X}}/F^{\star}$	std. dev.	η	c_{p}	$\bar{F}_{\mathcal{X}}/F^{\star}$	std. dev.	
0.965	6.02×10^{-3}			0.839	5.02×10^{-3}			0.833	8.12×10^{-3}			0.642	3.03×10^{-2}	
0.967	5.65×10^{-3}	10	0.05	0.896	3.83×10^{-3}	75	0.0	0.894	2.55×10^{-3}	160	1	0.624	2.80×10^{-2}	
0.982	5.28×10^{-3}			0.933	4.17×10^{-3}			0.931	1.47×10^{-3}			0.622	1.91×10^{-2}	
0.997	6.95×10^{-4}							0.985	5.65×10^{-3}			0.953	4.88×10^{-3}	
0.994	3.48×10^{-4}	10	0.1		×			0.987	2.93×10^{-3}	10	1	0.950	2.87×10^{-3}	
0.997	3.37×10^{-4}							0.995	2.70×10^{-3}			0.953	1.77×10^{-3}	
0.853	2.46×10^{-2}			0.703	6.03×10^{-2}			0.694	3.44×10^{-2}			0.632	2.99×10^{-2}	
0.906	1.25×10^{-2}	10	0.01	0.776	1.28×10^{-2}	75	0.0	0.768	2.87×10^{-2}	160	1	0.615	2.32×10^{-2}	
0.925	9.09×10^{-3}			0.807	1.52×10^{-2}			0.805	2.48×10^{-2}			0.629	2.36×10^{-2}	
0.861	1.82×10^{-2}							0.720	2.28×10^{-2}			0.620	6.08×10^{-3}	
0.908	9.42×10^{-3}	10	0.001		×			0.786	1.27×10^{-2}	160	1	0.619	4.70×10^{-3}	
0.927	6.34×10^{-3}				2			0.818	1.3×10^{-2}			0.625	1.10×10^{-2}	
0.792	2.60×10^{-2}			0.681	8.41×10^{-2}			0.69	1.11×10^{-2}			0.748	5.26×10^{-2}	
0.781	1.36×10^{-2}	1.0	0.05	0.713	7.44×10^{-2}	1.0	0.001	0.676	1.03×10^{-2}	160	1	0.7	4.76×10^{-2}	
0.866	1.02×10^{-2}			0.756	6.42×10^{-2}			0.769	1.65×10^{-2}			0.711	3.11×10^{-2}	
0.948	9.70×10^{-3}						0.908	2.39×10^{-2}	_		0.829	5.54×10^{-2}		
0.908	5.14×10^{-3}	10	0.001		×			0.902	1.98×10^{-2}	160	8	0.814	1.51×10^{-2}	
0.948	3.13×10^{-3}							0.964	2.01×10^{-2}			0.874	2.84×10^{-3}	
0.987	4.03×10^{-3}			0.845	4.73×10^{-2}			0.844	2.21×10^{-2}			0.605	3.13×10^{-2}	
0.994	2.83×10^{-3}	0.05	0.1	0.868	2.14×10^{-2}	1	0	0.886	1.88×10^{-2}	1	2	0.603	2.01×10^{-2}	
0.998	2.55×10^{-3}			0.869	2.95×10^{-2}			0.902	2.28×10^{-2}			0.612	1.18×10^{-2}	
0.983	2.33×10^{-3}							0.834	4.01×10^{-3}	_	_	0.611	9.15×10^{-3}	
0.991	1.18×10^{-3}	0.1	0.001		×			0.852	2.04×10^{-3}	1	1	0.607	5.44×10^{-3}	
0.994	$ 7.75 \times 10^{-4} $							0.857	$ 1.36 \times 10^{-3} $			0.601	$ 7.71 \times 10^{-3} $	

21	Vancouver	Canada

	Prob. Class										
Paper		Stat	ic		Dynamic				Opt	imistic	Time
		Uni.	Part.	Gen.	Uni.	Part.	Gen.	Uni.	Part.	Gen.	
Niazadeh et al. [2021]	GS	$r\sqrt{\log\left(n\right)T}$	×	X	×	×	X	×	X	×	T^4O_b
Harvey et al. [2020]	GS	$\sqrt{r \log r}$	$\left(\frac{n}{r}\right)T$		×	×	×	×	×	×	$egin{array}{l} nr^2 + O_{ m m} \cdot n^4/\epsilon^3 \ \cdot \log(n^3T/\epsilon) \end{array}$
Matsuoka et al. [2021]	GS	$r\sqrt{r\log(nT)T}$	×	X	$\sqrt{r(r\log(nT) + P_T)T}$	×	X	×	X	×	nr
Streeter et al. [2009]	GS	$r^{\frac{3}{2}}\sqrt{\log(n)}$	$\overline{\Gamma}$	X	×	×	X	×	X	×	$n^2 c_{ m p}$
Chen et al. [2018]	DR-S	\sqrt{rn}	\overline{T}		×	×	X	×	X	×	$\sqrt{T}O_{ m oco}\cdot O_{ m m}+n^{2}$
Zhang et al. [2019]	DR-S	$T^{\frac{4}{5}}$			×	×	X	×	X	×	$T^{\frac{3}{5}}O_{\rm oco} \cdot O_{\rm m} + nr$
Zhang et al. [2022]	DR-S	\sqrt{rn}	\overline{T}		×	×	X	×	X	×	$O_{ m oco} \cdot O_{ m m} + nr^2$
Kakade et al. [2007]	LWD	$n(\alpha + 2)$	$2)\sqrt{T}$		×	×	X	×	X	×	TO_{lpha}
This work	WTP	$r\log($	$(\frac{n}{r})T$		$\sqrt{r(r\log(\frac{n}{r}) + \log(\frac{n}{r}))}$	$(n)P_T$	T	$\sqrt{r(r)}$	$r \log(\frac{n}{r}) / \sum_{t=1}^{T}$	$\frac{1}{\ \mathbf{g}_t - \mathbf{g}_t^{\pi}\ _{\infty}^2}$	nr^2

Case of Weighted Threshold Potentials

• The class of **WTP functions** satisfies the **sandwich property** under appropriate randomized rounding and concave relaxation schemes.

A **threshold potential** is defined as:

 $\Psi_{b,\mathbf{w},S}(\mathbf{x}) \triangleq \min\left\{b, \sum_{j\in S} x_j w_j\right\}, \text{ for } \mathbf{x} \in \{0,1\}^n,$ where $b \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ is a threshold, $S \subseteq V$, and $\mathbf{w} = (w_j)_{j \in S} \in \mathbb{R}$ $[0,b]^{|S|}$ is a weight vector. The class of weighted threshold potentials (WTP) contains functions of the form:

 $f(\mathbf{x}) \triangleq \sum_{\ell \in C} c_{\ell} \Psi_{b_{\ell}, \mathbf{w}_{\ell}, S_{\ell}}(\mathbf{x}), \text{ for } \mathbf{x} \in \{0, 1\}^n,$ where C is an arbitrary index set and $c_{\ell} \in \mathbb{R}_{>0}$, for $\ell \in C$. This class includes many important applications:

- influence maximization [Kempe et al., 2003]
- facility location [Krause and Golovin, 2014, Frieze, 1974]
- cache networks [loannidis and Yeh, 2016]
- similarity caching [Si Salem et al., 2022]
- **demand forecasting** [Ito and Fujimaki, 2016]
- team formation [Li et al., 2018]

Concave Relaxation

The relaxation of any WTP function f is itself: for $\mathbf{y} \in \mathcal{Y} \triangleq$ $\operatorname{conv}(\mathcal{X})$:

$$(\mathbf{y}) \triangleq f(\mathbf{y}) = \sum_{\ell \in C} c_{\ell} \min \left\{ b_{\ell}, \sum_{j \in S_{\ell}} y_j w_{\ell,j} \right\}.$$
(1)

The functional form of f remains unchanged while accommodating fractional inputs.

Relation to Sandwich Property

• **Concave relaxations** in (1) satisfy the **sandwich property** with $\alpha = 1 - 1/e$:

Consider the concave relaxations f constructed from WTP functions $f \in \mathcal{F}$ via Eq. (1). Then, if these concave relaxations are uniformly Lipschitz with constant L > 0, the set \mathcal{F} satisfies the sandwich property with $\alpha = 1 - 1/e$, for any **any negatively** correlated rounding $\Xi: \mathcal{Y} \to \mathcal{X}$.

Negatively-Correlated Rounding

• A negatively-correlated randomized rounding can always be constructed if \mathcal{X} is a matroid:

(Chekuri et al. [2010, Theorem 1.1.]) Given a matroid \mathcal{X} \subset $\{0,1\}^n$, let $\mathbf{y} \in \operatorname{conv}(\mathcal{X})$ and Ξ be either swap rounding or randomized pipage rounding. Then, Ξ is negatively correlated.

RAOCO for WTPs

Theorem 2: Let $\mathcal{X} \subseteq \{0,1\}^n$ be a matroid, and \mathcal{F} be a subset of the WTP class for which the concave relaxations are uniformly Lipschitz continuous. Then, the RAOCO policy $\mathcal{P}_{\mathcal{X}}$ defined using swap rounding or randomized pipage rounding as Ξ , a sublinear OCO policy $\mathcal{P}_{\mathcal{V}}$, and concave relaxations in (1) has sublinear α regret, with $\alpha = 1 - 1/e$.

BOSTON UNIVERSITY

Comparison to Existing Work

$$\mathcal{L}$$
 and $\mathcal{L}_{\ell} \in \mathbb{I} \mathbb{K}_{\geq 0}$, for ℓ

Extensions

Dynamic Setting

In the **dynamic** setting, the decision maker compares its performance to the best sequence of decisions $(\mathbf{y}_t^{\star})_{t \in [T]}$ with a path length regularity condition. We show that **RAOCO** equipped with a **modified OMA** policy has sublinear dynamic α -regret.

a) **Stationary**: All policies have similar performance in the stationary setting and are able to match the performance of the static optimum.

Optimistic Setting

In the **optimistic** setting, the decision maker has access to a predictor function $\pi_{t+1}: [0,1]^n \to \mathbb{R}_{>0}$, before committing to a decision \mathbf{x}_{t+1} at times lot $t \in [T]$. We show that **RAOCO** equipped with a modified Optimistic OMA policy has sublinear α -regret.

Optimistic OGA is able to exploit these predictions to match the performance of the dynamic optimum.

Bandit Setting

In the **bandit** setting, only the reward value $f_t(\mathbf{x}_t)$ (but not $f_t(\cdot)$) is revealed. We construct a reduction to OCO based on Wan et al. [2023], for **general monotone submodular** rewards but restricted to **partition matroid constraints**, obtaining again a sublinear α -regret.

		(1-1/e)-regret (Bandit)							
Paper	Prob. Class	Stat	ic	Dynamic	Optim				
		Uni.	Part.	Gen.	Part.	Par			
Kakade et al. [2007]	LWD	$n^{rac{5}{3}}T$	$\frac{2}{3}$		×	×			
Niazadeh et al. [2021]	GS	$rn^{rac{2}{3}}\log^{rac{1}{3}}(n)T^{rac{2}{3}}$	X	×	×	×			
Streeter et al. [2009]	GS	$\log^{\frac{1}{3}}(n)(nc_{\mathrm{p}}r)$	$)^{\frac{2}{3}}T^{\frac{2}{3}}$	×	×	×			
Wan et al. [2023]	GS	$r^{rac{4}{3}}n^{rac{4}{3}}T^{rac{2}{3}}$		×	×	×			
This work	GS	$lpha r^{4/3} n^{4/3} T$	2/3	×	$\sqrt{P_T}T^{4/5}$	$ W\sqrt{P_T \sum_{l=1}^{T/W} + T(\delta + \delta)} $			

Acknowledgements

We gratefully acknowledge support from the NSF grants 1750539, 2112471, 1813406, and 1908510.

